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ABSTRACT

Four boundary value problems in unsteady simple shear flow are
considered. Solutions for the second-order fluid approximation are listed,
including a solution which seems to be new. For the third-order fluid approx-
imation,solutions are obtained for the linearized versions of the various pro-
blems. The Second Law of Thermodynamics, reduced to the requirement
that the rate of deformation work be non-negative, is applied to these solu-
tions. The signs of the pertinent second-order material constant is not
determined whereas the signs of the pertinent third-order constants are
determined. On the other hand, the Second Law places restrictions on the
allowable solutions; for some problems no solution is valid. The implica-~

tions of these results are discussed.
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1, Introduction

1.1 Simple fluids and n-th order approximations

Noll:l has defined a general type of nonlinear fluid with memory which is
called a simple fluid. In this paper we shall be concerned only with imcom-

pressible fluids so that the constitutive equation takes the form

T = “FI, + Z(@ (:)) (1.1)

where T is the stress tensor, p is the indeterminate pressure, 1 the
—~ oo -~
identity tensor, i(é‘ (:)) is a functional over the deformation history tensor
szo0
G (s). Throughout this paper we will call T + p}.‘ the extra stress and denote

it by S. The deformation history tensor is given by
G(s) = Gy lt-s) -1 (1.2)
whe re
- F. @-s)F, (t-s)
Cop (=517 Ly 0177 (131

and

(t-s) = -‘lg(i«,iu) (1.4)

f(f) DX

where § is location at time (t - s) of the material particle which is at X

o~

at time t. In (1.1) the functional must be isotropic in g(s)

W. Noll, Arch. Ratl. Mech. Anal. 2, 197 (1958).




and we impose the conditions that if the fluid has been at rest for all time

the extra stress is zero, that is

£(0)-0 0.9

fasd

S0
and thus p is a hydrostatic pressure. Simple fluids include the pheno-
menon of stress relaxation as well as nonlinear shear stress versus shear
rate, and,unequal normal stresses.
Coleman and Noll2 have shown that if the functional 5 is n-times differ - (
entiable in a suitable way with respect tothe deformation history G and if
G(s) has n derivatives at s= 0, the following constitutive equation is a suitable

n-th order approximation for slow enough motions:

T=-pl+2 4 . [A A;‘k] (1. 6)

~ . e e I\..J". t U~
Greow jk) S
where the summation is over all sets of integers ji. . .jk for which
1< ), 2 ... € j,€n it + S (1.7)

The Ai are Rivlin-Ericksen tensors which have the curvilinear-coordinate
component form
(-0 . .
() () . (J)P (¢-))
) = Xk —+ xmk—’.Z(J‘)x»kX{),m (1. 8)
k”" . " ’ J‘:I
(@)

where, for example, X, , is the convariant derivative with respect to

(A

~ {

the position coordinate x™ of the k-th component of the i -th accelera-

B. D. Colman and W. Noll, Arch. Ratl. Mech. Anal. 6, 355 (1960).




tion. The A are material coefficients and the relation (1.6) is linear and

Rje-jk
isotropic in each ,éi.

The precise manner in which (1. 6) is an approximation to (1.1} can be
found in Ref, 2. Suffice it to say here that if the time scale is slowed down

by a factor «, 0L X < | the error made in approximating (1.1) by

>
(1.6) is higher than ordér n in o . In particular (L 6) does not include
stress relaxation effects; that is, if the first n time derivatives of the
motion vanish the stress reduces to the hydrostatic pressure.

A logical question to ask is whether the constitutive equation (1. 6) can
be any more than an n-th order approximation to a simple fluid. That is, is
it reasonable to assert that (1. 6) could represent a fluid for all histories no

matter what their magnitude; can we talk about n-th order fluids? This ques-

tion will be partially answered in the remainder of this paper.

1.2 The Second Law of Thermodynamics

The differential balance of energy can be written in the form

5)5 =1tr (T D) -Yq + pr (1.9)

i . . .
where Q =2‘A, is the rate of deformation tensor, & is the internal energy
per unit mass, g 1is the heat flux vector and r is the heat supply per unit

~

mass and 1 is the density. The differential entropy balance is given by

C . v 4 r
ey = v 5 + f—é -+ fy (1.10)

where ? is the entropy per unit mass, © is the absolute temperature

and ¥ is the entropy production per unit mass. Following Coleman and Noll

B. D. Coleman and W. Noll, Arch. Ratl. Mech. Anal., 13, 167 (1963).




we state the Second Law of Thermodynamics as the requirement that ¥
be non-negative for all admissible thermo-mechanical processes. By ad-
missible thermo-mechanical processes are meant processes which satisfy
the balance of linear momentum as well as the balance of energy and also
satisfy all assumed constitutive equations. The Second Law thus is seen to
place restrictions on the allowable constitutive equations and/ or, as we
shall see, on the allowable motions. From (1.9) and (1.10) we get for the

Second Law

g6 ¥ =9(e7‘-é) + Ir(TD)-59-vo (1.11)
For an incompressible material (1.11) reduces to
p0Y = P(e7-é)+tr(§2)—g‘;3-ye (1.12)

We can restrict our attention to purely mechanical variables by assum-
ing that the entropy and internal energy are constant, and, that the entropy

production due to heat conduction vanishes, so that (1.12) reduces to

pOY = tr (sD)=0 (1.13)

which says that the entropy production is due entirely to the rate of deform-
ation work. We cannot say how much the above assumptions are restrictions
until we say something about the constitutive equations for the thermal
variables & , ? and ¢q . Materials and conditions for which the inequality

(1.13) holds are discussed by Coleman4. We will comment further on this point

B. D. Coleman, Arch. Ratl. Mech. Anal., 9, 273 (1962). The starting
point of the relevant discussion in that reference is justified by B. D.
Coleman, Arch. Ratl. Mech. Anal., 17, 1(1964) which contains a general
thermodynamic theory of materials with memory.




in Section 4. Such considerations are beyond the scope of this paper. However,
we can note the following. If there is no heat flow, which is the case for an

adiabatic material, then by (1.9) and (1.13) we have

pr= - tr(sdR) <0 (1.14)

that is, in order for the balance of energy to be maintained heat must be
withdrawn at each point at a rate exactly equal to that determined by the rate
of deformation work. On the other hand, if the entropy production due to

heat conduction vanishes because the fluid is such a good conductor that Y@

is zero, then by (1.9), if r= o, we require that

V-q = tr($p) (1.15)

o
~

that is, q is determined by the rate of deformation work. (Note that in the

~

latter case q is indeterminate in the sense that it is not determined from a

~

constitutive equation. The situation is quite analogous to the indeterminate

pressure in incompressible fluids).

1.3 Unsteady simple shear flows: boundary value problems

An unsteady simple shear flow is a flow whose velocity field ¥ can be
represented in a Cartesian rectilinear coordinate system by the following

components
u:u(y)‘t) V=0 w =20 (1.16)

The differential equation form of the balance of linear momentum can be




expressed in vector notation by

IZ -+ fk = P'\:/v (1.17)

where Z is the derivative operator and ’é is the external body force
per unit mass, We will assume that fi’, can be derived from a potential
X by means of fl? = - VX. We then introduce in the usual way the modi-

fied pressure ¢ by means of

b =p+ X (1.18)

Then, in terms of the extra stress S , the balance of linear momentum

~

becomes

SY -Y¢ = px (1.19)
Since the velocity is assumed to be independent of x and 3z it

follows that the Rivlin-Ericksen tensors are also independent of x and z

and also along with (1. 16) it follows that

sz = Syz = Sz.z = 0 (1.20)
It then follows that the components of (1.19) reduce to

%y Oxy " b = pOtu | (1.21)
9y5y; - 9>d> =0 (1.22)

0,

Ul
o

(1.23)




We see that the modified pressure must be independent of z and from (1.21)

and (1.22) that

b =5, +xylt)+ g(t) (1.24)

and hence (1.21) reduces to
Oy Sxy = P Oy u + Y (t) (1.25)

where ¢ (t) is the modified pressure gradient in the x-direction. The
analysis of this paragraph is a generalization of one contained in Markovitz

and Coleman.

We now list several boundary value problems in unsteady simple shear

flow:

Problem 1. We consider the boundary conditions

u(o,t) = U u(L,t)=o0 (1.26)

along with the assumption that the modified pressure ¢ has no gradient

in the x -direction so that by (1.24)

¢ (t) = O (1.27)

For arbitrary initial conditions this problem is transient as well as unsteady.

H. Markovitz and B. D. Coleman, Phys. Fluids, 7, 833 (1964).




For this problem we make the following non-dimensionalization
|

= _u 7. mt S. Y (1.28)
u U t _/;LL Y L.
and the boundary conditions (1.26) reduce to
a(ot)=1 @(1,t)=o0 (1.29]

The rest of the problems we consider are unsteady but oscillatory and

so do not require initial conditions.

Problem 2:

u(o,t) =Ucws Nt ulL,t)=o0 (1.30)
This time we make the following non-dimensionalization

az__&_ I-nt yzf. (1.31)

which reduces (1.30) to

—

a(o,T) = cost a(1,t) = o (1.32)

Problem 3: Consider a variation of the preceding problem in which

L= o , thatis we have the boundary conditions

u(o,t) =Ucosnt Uo, t)=0 (1.33)




We introduce the non-dimensionalization

=i
W

g t=at 7=7/§{—2 (1.34)

which gives the dimensionless boundary conditions

2 (0 f)=cost G(ot)=o0 (1.35)

)

Problem 4: A final problem in unsteady simple shear flow has the

boundary conditions
u(l_,t)= u(*l_,‘f)=0 (1.36)
with the pressure gradient in the x-direction given by

Gt) = ¢ + &, cos 2T (1.37)

With the non-dimensionalization

a= P f-at 977 %=1, (L.38)
(1.36) and (1.37) reduces to
a(Lt) = al-1, {) = 0 (1.39)
and :
GG = 1+ ()it (1.40)




2. Second-order approximation

2.1 Solutions

For n=2 equation (1, 6) reduces to

)

I = —Fl +/“Al "'/“1(2)62: + M Az (2.1

where the fact hé.s been used that for incompressible fluids tr,é." =0
and also all isotropic tensors have been absorbed in the indeterminate
pressure term —-Pl . For n=1 we would have only the linear term /u'_Av.
which compri ses the classical linear theory of viscous fluids. Each of the
second-order terms is nonlinear: the first because ’/\‘\, is squared and the
second because ,’62 contains a product term as given by (1.8). The co-
efficient 4 is the usual linear viscosity and /u,(z) and /.4:) are second-
order material coefficients.

For unsteady simple shear flow Coleman and Noll in Ref. 2 derived the

following non-zero components of the extra stress:
- _ ()
éxy—/uu?'-f/u‘ Uyt
) 2 (2.2)
Sxx

- (2 (@) 2
57}/ </M, +2/»(‘ )M}'

and from (1.25) the governing differential equation for the velocity profile:

i
x
\2

[

MYy * Pyt = pup+ § (@) (2.3)

where the subscripts on U indicate partial differentiation.
It was noted by Coleman and Noll that, rather surprisingly for a non-
linear theory, the velocity profile is governed by a linear equation. However

from (2.2) it is seen that the normal stresses are nonlinear as well as unequal.

10




We now present the solutions, for the second-order approximation theory,

to the boundary value problems listed in Section 1.3.

Problem 1: Using (1.27) and (1.28) equation (2.3) reduces to

_ W_ - .,
M}',)-, -+ /\ M)-;;,t ut (2.4)

()
where /\ is the dimensionless group
('z) ()
N =L (2.5)
pl
The steady - state solution of (2.4) is
h=1-Yy (2.6)

and the unsteady solution which can be found by separation of variablesé,

after nondimensionalizing in the above way, is

us=1-y +ZA ex,u[ (/+ e /\“’ f]S/any (2.7)
We see that a departure in the initial velocity distribution from the steady
state is represented by a Fourier series. On examination of (2.7) we note
that for positive /\m' that is for a positive value of the material constant
/af\ , every term of the series is convergent, whereas for negative /\m

only terms for which

I i
n‘\/\m,z (-8

n <

T. W. Ting, Arch. Ratl, Mech. Anal. 14, 1(1963)
11




are convergent,
Problem 2: Using (1.27) and (1.31) equation (2.3) reduces to
- @_ —
Niss + N Ggst = b3 (2.9)

(@)
We see in this case that there are two dimensionless groups: /\ as given

by (2.5) and /\ by

A =;LA‘_3._(2 (2.10)

. . . 8 . .
The solution, obtained by Markovitz and Coleman , after non-dimension-

alization in the above way is

a = Re{&‘(y)e“t} (2.11)
where
A { -—)
2(3) “:fn/;;n;[,:y (2.12)
and

m= i/ (A+ N ))* (2.13)

Problem 3: Using (1.27) and (1.34) equation (2. 3) takes the form

! See also B. D. Coleman, R. J. Duffin and V. J. Mizel, "Instability
and Uniqueness Theorems for the Equation u = -u, ona Strip',
to appear in-Arch. Ratl., Mech. Anal,

8

H. Markovitz and B. D. Coleman, Adv. Appl. Mech., Vol. 8, Academic
Press, N, Y. (1964).

12




_ I

(2)
where now the dimensionless group /\ is given by

> Q)
/\() = ML (2.15)

/M.

The solution to this problem was obtained by Markovitz and Coleman in

Ref. 5 and, after the above non-dimensionalization, is

Z(y,t) ’€—Ayco.9[z"—3)’7) (2.16)

where

(2.17)

wi1is A Z
A,B-—‘{[H(A)] t A }
201+ (A7 ]

The parameters A and B are always real and positive regardless of the
(2)
sign or magnitude of .

Problem 4: Using (1.38) equation (2.3) reduces to

— @) — - = W £
/\M;,; +/\zu)~,>—;'t = Us +/+(¢0)Cosf (2.18)

| e)
where A is given by (2.10) and /\ by (2.5). The non-transient solu-

tion to this problem can be found by assuming a solution of the form

P - A (‘f—
a(y,t) = Uy () -fﬁe/u,(y)e f , (2.19)

13




One then finds that the solution is given by

Aoy Loyta 2.20
Mo(y) oA ()’ I) ( !
& (y) = c(gf)[/ - C————’fjf},:—] (2.21)

where m is given by (2.13).

2.2 Application of the Second Law

Substituting the constitutive equation (2.1) of the second-order approxima-

tion into the Second Law inequality (1.13) we find that
2 (2) 3 @)
F@Y ‘-‘./L( t}"fé, -+ //‘/ ZLI“A, -+ /(Z fr /L4/,62> _? 0 (2.22)

A solution to Sec. 21 which satisfies the thermal assumptions leading (1.13)
must also satisfy the inequality (2.22).

For unsteady simple shear (2.22) reduces to

Y = 2L YDy s (2.23)
pOE T 2y F S 20 '

We see from (2.23) that for steady motion

M >0 (2.24)
which is the well-known result that the viscosity of the classical linear
theory must be positive.

Consider a flow in which the velocity gradient Uy = O at some instant

of time T for some Y . Then u; is a minimum at that instant and

14




3u;/5‘l‘= O and by (2.23) SDGX‘ O at such an instant. But also by (2.23) 9€Y
must be a minimum when f6¥=0 so that B(j:»GX)/at =0 , thatis

kS

(2)a 2
2 = 2.
/“2&1"'(“7) o (2.25)
sy sqses () 2, 2 *

There are two possibilities: Mz = O ,0r, P) (M),)/az‘ =0

¢
which is equivalent to au7 /ot =0 . Now assuming that /u:) is
unequal to zero in order that we are dealing with the second-order approxi-
mational rather than the linear approximation, we have the conclusion that
a flow for which u),=o and BMIV/B‘f # O violates the Second Law of
Thermodynamics in the form (1.13). In the light of this remark we now

examine the four solutions for unsteady simple shear flow contained in

Section 2.1.

Problem 1 : The velocity gradient calculated from (2.7} is
— [ n*n* ') M (2.26)
- - Bl e e ~OS In .
uy = - +2_ T Anexp (1+ n‘wr‘/\“’>t cos nity
h=1

lLet us suppose that there is a Yo at a certain instant of time t, such

that

(yoilfo);—O:"l—i'Z BYI (2.27)

where

B, = nTA, exp [— ( = :z::/\m>-f°JcOS N Yy (2.28)

that is, the velocity profile has a maximum or minimum at a certain instant

15




of time. Now also at y, and ‘fo we have

20 S e >5 (2.29)
Y % Z(Hn‘”‘/\“) "

I

ot ] He i

It can be shown that if (2.27) holds then (2.29) does not vanish. Thus, for
this problem flows for which the velocity gradient vanishes are not allowed.
It is clear that if /\(7-) is positive and the initial profile is monotomic then
zero velocity gradients will never develop. On the other, it is clear that
if /\(2) is negative and terms for which (2. 8) is violated are admitted, then
such terms will ultimately lead to zero velocity gradients. Therefore we
conclude that for negative /\Q), terms for which (2.8) is violated not only
give rise to divergent flows but also violate the Second Law of Thermo-
dynamics.

More information about restrictions on the motion can be found by
applying the Second Law to a flow for which the summation in (2.7) contains
only one term, that is

—T
ni

a = ]-S‘/ + AhexP [—(m>}]5ih h'ﬂ";l (2.30)

Substituting in the appropriate dimensionless form of (2.23) we get

(1-b)a" 4 (2-b)a + 1 = o (2.31)

where

— n'm? 1. -
d= ni An ex‘o[— (m>‘l’_}cos nwy (2.32)
2. )
b= A 2.33
| + n.,__“_z /\(z) ( )
16




Now the left-hand side of (2.31) is a quadratic form in a and it has the
discriminant b2 which is positive or zero. For b+# 0 then the inequality
is violated for some values of a whereas for b = 0, that is /\u)___ 0, the
inequality is satisfied. The question then is: for a given /\(L) , for what
values of n and A, is the inequality satisfied for all y ? For /\(2)

positive we have

@
0< b < | for A > 0 (2.34)

which means that the entropy production is negative when a lies in the

range
_ | < a < - (2.35)
1- b
that is
._(|+n"|T"/\m)< a< -\ (2.36)
From (2.32) and (2.36) we see that for
(2.37)

nT A, |
a does not enter the range of (2.36). Another way of stating (2.37) is that

(2.38)

|
N
IN
<

X1

17




(?) .
Next let us consider negative /A7, We then write b in the form

P (2)
L - -n'T ‘/\ , (2.39)
| - n? gt I /\MI
Now for n restricted by (2.8) b is negative and hence (1-b) is positive so

that again the entropy production is again negative over a finite range of a,

this time

1< a < =(1-mm|AY)) (2.40)

From (2.32) and (2.40) we see we must have the condition

nm ALl € 1 - T AP (2.41)

which is a more severe restriction than (2.38), This can also be put in

the form
-z + nur | A?] < ug < -ntrt N (2.42)
Problem 2: From (2.11) we have
- A it
iy = Ke{uyc } (2.43)

where from (2.12)

_ mcoshm (1-9) (2.44)
sinh m

<O
~i
!

18




Recalling that m as given by (2.13) is complex we see that there are many
possibilities for (7; to be zero. It is clear from the boundary conditions
of the problem that for a given ¥  the velocity gradient is periodic with the

same frequency as the oscillating wall, Now from (2.43) we have
Jdls . A it
=7 = Gb_ { M}‘, (ot (2.45)

¢

Now let 37=re‘ and therefore
a7= &{rc‘cbctf} =FCOS(¢+‘{') (2.46)
When U;, =0 we have (¢+ ‘E)=1T/2 modulo ™ . Now

é_’gy-z KL{‘.I‘C‘.&C‘.Z} = Yeos <¢+% '*-‘2—1> (2.47)

which is not zero when (@+T )= 7/2 modulo W . Therefore this problem

violates the Second Law for all values of the parameters of the problem.

Problem 3: From the solution (2.16) and (2.17) we get that the

velocity gradient vanishes for all (7° ,fo) which satisfy

tan (f,- By,) = —g\— (2.48)
For such (¥, , )
D;_t_?; = I'g—(AL—+ B*) e—Ay" cos (To- 8703 (2.49)
2

19




Now from (2.48) we see that
t - By, # % modulo T

so that (2.49) would never vanish. Thus the solution for this problem also

violates the Second Law for all values of the problem parameters.,

Problem 4: From (2.19), (2.20) and (2.21) we have
- A A~ ot
Uy = Uoy + &{M.y et } (2.50)
and
Diis N
c.)__t__>'= &{Lu,ye (2. 51)
where
A | -
. L 2. 52)
Uy = A Y (
and
{4"7 = % wmsinhmy (2.53)
Yo cosh m

At }',':0 both Uy and Bay/bf vanish so that at least on the center line
the Second Law is not violated. However, there may be other y's for
which the velocity gradient vanishes, but duy /ot does not, The
answer to that question appears to be a complicated algebraic problem, but
the author suspects that this flow will be found not to violate the Second Law

of Thermodynamics.

20




3., Third-order approximation

3.1 Solutions to linearized problems

For n = 3 equation (1l.6) yields

N SRS

(3)

b 1O BYA DA+ s AA A+ 3.1)

1

)
+/Uf))(ﬁ\n£\z + ,Alé') -+ /“-(;,’53

where in addition to the linear and second-order terms of (2.1) we have five
new terms, each with a new material constant.

For unsteady simple shear flow the extra stress components are

@) : — 3 &)
Sxy = ey + M, Uyt + MUy + M Uytt

Sxz = 5)’2 =0

Sxx = /xfz)u; -+ 2/44(3)947 Uyt (3.2)
Syy = (/u.m + Q/UZM) u; +2 (/»‘f’+ 3/,«_{:?’) Uy Uyt
Szz = 0

whe re

— (3 e @ @ @ 3.3
FO a2 (pepplere 1) -2
Substituting the first equation of (3.2) into (1.21) we get

) _ (t) 3.4
, (2) —(3) 2 u = u, + ¢ (3.4)
Py + pg iyt +3ET(w) Yy T/ it = £

21




We note immediately that this governing differential equation is nonlinear
and also that we now have second-order time differentiation. We present
here solutions to linearized versions of the boundary value problems listed

in Section 13.

Problem 1: Using (1.27) and (1.28) equation (3.4) reduces to

@ _ ) @)

-+ M??'E +3/\‘ (&7)2&‘7-7 +/\2_ a};{{ = J{ (3.5)

Uyy
@ . . .
where in addition to /\) given by (2.5) we have two more dimensionless

numbers

, . (3)

) ~(3) C (3) A

/\(3 - A (_Q) N, = MM (3.6)
2 2] 4

e L o' L.

Again we have the steady-state solution (1 - y ). Since (3.5) is non-
linear we are not surprised to find that an exact solution by analysis is not
readily obtained. For example, the method of separation of variables which
can be used to find the solutionto the linear equation (2.4) does not work in
this case. We therefore settle for a perturbation analysis of the steady state

solution; we assume a series solution of the form

nw=1-y +ev(yI)+ Q6> (3.7

where € is a parameter which tends to zero. Upon substitution into

(3.5) and equating coefficients of & we have

3\ - ?) (3).— Y (3.8)
+ -— -+ T + o = V
(‘ 3/\1 ) v)’y v77t /\Z. Vg5t 1

22




which is a linear differential equation for the first term V (}7,{) in the
series of (3.7). The velocity perturbation V  must satisfy the boundary
conditions that it vanish on both boundaries.

By separation of variables we obtain the following solution of (3.9):

Q-1-7 +€) (Ane"’(”‘z B,,?‘“*)sfw Wiy + Qe (-9
n=i

where

ins e = | + ) % JGe A7) -4n2 (4 3AT) } (3.10)
2

Because of the second-time derivative we must specify the acceleration as

well as the velocity at time t = 0 in order to determine a solution.

For what combinations of values of /\(Z), =) and /\(3) is the above
solution convergent? Off hand it does not appear that the condition (2.8)
for negative /\(z) automatically carries over to the stability analysis of
the third-order theory. The conditions for which the solution (3.9} and
(3.10) converges or dlverges are summarized in Table 1. We note that for
stability (n it m) and <l+ 3/\(3)) must all have the same
sign, If /u"\ is negative then, by (3.6) (I + 3/\(3)) could change sign
as U/ L is varied. However /\ and ( et /\“)) cannot change sign

with U/L. Therefore in
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order to have stability for negative /1(33 the quantity U/ L is restricted

3
to ranges for which (1 + 3 /\‘ : ) does not change sign. Such ranges are

— (3
0< 19 < \/.__,%(3)_ for $+3/\,>O (3.11)

or
U
—7&_(—,,‘ < E (3.12)
V3 l/u |
Problem 2: Using (1.27 and (1.31) equation (3.4) reduces to

— ?) — ) _ ®_ =
Nisy + Nigzr + 3N, (ay)" og +/\e st =0y (3.1

124l

()
In addition to the dimensionless groups /\ and /\ given by (2.10) and

(2.5) respectively we have the two new groups

A ft:(f)l( > A, - L (3.14)

()
For [U=0, and hence /\| =0 , there is no motion, after any transient

motion has died out. We therefore consider small motions by assuming the
(3)
following series in /\

2(5,8) = A, ¥ + O (APY] (3.13)

(2)
On substituting (3.15) into (3.13) and equations coefficients of /\ we get

the following linear equation for v

_ @ _
N Vz7 + NS5t + A = V3 (3.16)

25




The solution of (3.16) is just a slight modification of that for the corres-
ponding solution for the second-order approximation theory; V is given

by the right-hand side of (2.11) and (2.12) but (2.13) is replaced by

" =[i/(/\—/\(;)+ i/\(z))fz— (3.17)

Problem 3: Using (1.27) and (1.34) equation (3.4) reduces to
o= G (3.18)
77 /\ U i’ +.3/\ (U )My)‘ 2Uystt t :

@ (%)
where /\ is given by (2.15) and /\, and /\

(3) —@)
A,

ny* (2) - "
/&_/%_ /\2 = /&5__ (3.19)
As in the previous problem we look for a solution for small motions by means

of (3.15). The resultant linear equation for V(v t is
Y

— @ ( -
Voo * AR g9l * AL Vgl = Vg (3.20)

The solution to this problem is given by the right-hand side of (2.16) with

(2.17) replaced by
]

[(I /\())2+ (/\(Z))z,]z:t/\(z) +
i

The parameters A and B are always real and positive regardless of the

(3)
signs or magnitudes of /\Lz) and > .

A B

(3.21)




Problem 4: Using (1.38) equation (3.4) reduces to

(3 ¢ —_
— U- IF = Oy +1+|{-cost
/\u77 /\ u_-t 3/\ (M > 2 uy,{‘{ uy («,o) as (3.22)
(2) ¢) ®
where /\ is given by (2.10) and /\ by {2.5) and /\‘ and /\2 are
given by
@ —@ ;2 3) f) n
N, = £, AV /a_LT .23
paL £
Again we look for a solution for small motions by means of (3.15). The

resultant linear equation for V (Y, 1) s

-+

@) @_ — ] oy
Aoy + Kot + Al = 11+l s

The solution to this problem is given by the right-hand side of (2.19)
by (2.20) and (2.21) but (2.13) is replaced by (3.17).

3.2 Application of the Second Law

Substituting the constitutive equation (3.1) of the third-order approxima-

tion into the Second Law inequality (1.13) we find that

p0¥ = ptrAl + i tr Al 4 g dn (AR +
+/a, (Jn-A.) -+ /AL frA. + /“3 (J””AJH”A\)—" (3.25)

4 Pt (A A+l tr (AADE O
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For unsteady simple shear flow (3.25) reduces to

! _ 2 @) -G 4 @ >

25:.66’ = MUy Uy Uy Uy e Uy Uy 20 (3.26)
We see from (3.26) that for steady motion we must have

7% > o (3.27)

as well as (2.24).

As in Sec. 2.2 we again find by examining (3.26) that the rate of
change of the velocity gradient, that is bu,/b't » must be zero when the velo-
city gradient Uy 1is zero in order that (3.26) not be violated. We now
investigate what this and (3.27) mean in terms of the four solutions of the

previous section.
(2)

Problem L By (3.6) equation (3.27) implies that /\. must be non-
negative, that is
(3)
/\ = 0 (3.28)

!
Therefore by Table 1, in order to have stability (2.8) must be satisfied

and

3 |
A, =0 (3.29)

@)
That is we have the same condition on /\ and the wave number n as we
. . . (2)
had for the second-order approximation and also the requirement that Hs
be positive for stability. It is interesting to note from (3.10) that perturba-

tions for which

(3) 3) 2\ 2
4N, (1+ 3/\j ) > (G N (3.30)
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decay sinusoidally rather than purely exponentially.

It likely can be shown that as in the case of the second-order approx-
imation for this problem the velocity profile for a perturbed steady flow
must be monotonic in order that the Second Law is not violated. It likely
can also be shown that violation of the stability conditions also violates the

Second Law.

Problems 2, 3, and 4: Since the solutions of the linearized versions

of these problems differ from the solutions of the corresponding second-order
problems by only unimportant changes in constants and since the Second Law
criterion regarding zero velocity gradients is unchanged, all of our results of
Sec. 2.2 for these problems carry over here. That is, the solutions for
Problems 2 and 3 are not allowed for the third-order approximation whereas,

as far as we have investigated, the solution of Problem 4 is allowed.

4. Discussion and conclusions

We have found that the Second Law of Thermodynamics in the form of
the requirement that the rate of deformation work be non-negative places
restrictions on allowable motions for the second and third-order approxima-
tion to fluids as well as placing restrictions on the material constants appear-
ing in these theories.

Let us first discuss the restrictions on material constants. In addition
to the classical result that the linear material coefficient /,L is positive,
we found from the Second Law that the third order material constants /,7(3)
and /u(;) must be positive. On the other hand, we see that the sign of
the second-order material constant /u(:) which appeared in the analysis for

unsteady simple shear flow, is not determined. It may be possible to find

restrictions on the signs of the second-order coefficients by examining flows
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other than unsteady shear. It is intere sting to note that other evidence
indicates that /,{2(2) is non-zero and negative. Coleman and Ma.rkovitz9
have shown that if one assumes on the 'basis of thermodynamic intuition"
that the stress relaxation function of linear viscoelasticity is positive for
all times, then /uza) is negative. Furthermore, experimental determina-
tion of /uz(l), in particular by Markovitz and Brownlo, have yielded only
negative values thus far.

We turn now to the restrictions placed on allowable motions. It
turned out that for the oscillating wall problems, Problems_% and 3,
the solutions for the second and third-order approximation theories were
not valid for any values of the parameters of these problems. Problem 1,
the problem where one wall is moving with constant velocity, only has valid
solutions for restricted initial conditions: the velo city profile must be
monotonic and, if /u;") is negative, cannot contain harmonics above a
certain value which is dependent on ,/L(f') . On the other hand, the solu-
tion to Problem 4 when the flow is driven by a pulsating pressure gradient,
is valid as far as we have checked. It is interesting to note in Problem 1
that the conditions for stability are consistent with satisfying the Second
Law. From both stability and thermodynamic considerations, we conclude
that the second and third-order theoties are just approximation theories and
cannot be used indiscriminately as theories for any physically well-posed
problem. If such things as second-and third-order fluids existed in their
own right we would expect to get valid solutions for Problems 2 and 3, and,
Problem 1 for all initial conditions. On the other hand the linear theory can
be used as a fluid theary in that solutions for any physically well-posed problem

11
do not violate the Second Law. In 1951 Truesdell suggested that the inequality

? B.D. Coleman and H. Markovitz, J. App. Phys., 35, 1(1964).

10 H. Markovitz and D. R. Brown, Trans, Soc. Rheol., 7, 137 (1963).
1 C. Truesdell, J. Math. Pure Appl., (9),_;5_02 111 (1951).
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(1.13) be a restriction not on constitutive equations but rather on allowable
motions. Coleman in Ref. 4 advanced the point of view that (1.13) must hold
for certain motions, namely those for which the reduction from (1.12) to (1.13)
is valid; if (1.13) be violated in one of these motions, then the constitutive
equation should be rejected.. At least, the constitutive equation should be
rejected for those motions for which the Secdnd Law is violated.

It may be that the Second -Law inequality (1.13) as a requirement on
unsteady problems considered in this paper for the second-and-third-order
fluid approximations is inconsistent with the simultaneous approxi mations
appropriate to the thermal variables. It'maytbe necessary to set to zero
certain second and third-order thermal.material constants in order to
reduce to (1.13). It is intended to investigate this point in the near future.

A flow is said to be a helical flow if there exists a cylindrical coordinate
system (r 6, z) in which the physical components of the velocity have the

form

Vi, = 0 Vo = W(rt) Vy = u()’)f) (4.1)

In Ref. 5 it is developed that, for the second-order approximation, the com-
ponents W and W of the velocity field are deterinined by two separated,
linear, third-order partial differential equations. Problems corresponding
to Problems _Z_and i are then solved for in the case of Poiseuille flow (w =O)
and corresponding to Problem 2 in the case of Couette flow (u - o) . Explicit
solutions are ébtained when appropriate "small gap' approximations are made.
The Second Law takes the following form for helical flow of the second-order

fluid approximation:

po ¥ = 2/"[(" Wr)2+ ur ]+ /Az(z)a_—a-t-[(rw,)z—r ui} Z0 (42
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For Poiseuille flows (4.2) reduces to
2 (z) 2
pOY = 2uliy + pig 3‘{ u) >0 (4.3)
and for Couette flows (4.2) reduces to

00V = z/x(rwr)2+/Af)'§T(" wWedZ 0 (4. 4)

It would appear that the results we have obtained from applying the Second
Law to unsteady simple shear flows will carry over to the analogous pro-

blems in Poiseuille and Couette flowsof Ref. 5.
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